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HD Video of OK Go’s This Too Shall Pass — watched 100M+ times



Photo:  Tara Brown /  UW
~10 mi l l ion copies of  the HD movie
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to mainstream availability

Bandwidth goal is O(TB/s), today writes are at O(KB/s)


Very high throughput and low cost writing and reading


Large-scale fluidics automation


Scalable DNA physical organization and retrieval


Computational costs

Challenges
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Each spot grows many copies 
of a given  sequence. 

Many spots.
Large array DNA synthesis





~100TB per spot

275um

[manuscript under submission]



Droplet

Electrode ElectrodeElectrode

Activated Electrode

Electrode Electrode

Hydrophobic Layers

Digital microfluidics

Molecular  
domain

Electronic 
domain

Hardware, software, wetware :)



And now….





Beyond just data storage with DNA…



DNA “computing" in the age of big data

~100TB per spot

275um

If DNA data storage succeeds, what if we 
could process data directly in DNA? 

Extremely parallel and energy efficient



What are We Porting to AP:  
K-Nearest Neighbors 

K-nearest neighbors2 

Query Vector 
Candidate Nearest Neighbor Vectors 
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Parameters: 
Dimensionality – number of dimensions per feature vector 
Cardinality – number of features vectors in the dataset 
Neighbors – number of closest points to search for 

K-Nearest Neighbors is… 
(1) Vitally important for computer vision and search applications 
(2) Extremely data intensive and benefits from high memory bandwidth 

Algorithm is composed only of: 
(1) Massively data parallel distance 

calculations 
(2) Reduction of distance scores to 

top k scoring results 

Content-based media search
Extract feature vector, search in a high-dimensional space
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Parameters: 
Dimensionality – number of dimensions per feature vector 
Cardinality – number of features vectors in the dataset 
Neighbors – number of closest points to search for 

K-Nearest Neighbors is… 
(1) Vitally important for computer vision and search applications 
(2) Extremely data intensive and benefits from high memory bandwidth 

Algorithm is composed only of: 
(1) Massively data parallel distance 

calculations 
(2) Reduction of distance scores to 

top k scoring results 

Content-based media search … in DNA
Map features vector do DNA such that molecules mapping to similar vectors “stick”

[in DNA’18]



Synthesis Sequencing
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Query Image: Query Image: All Queries

(a) Number of aligned reads per target vs. distance from target to query. Points indicate

the mean across three replicates, and error bars indicate standard error. Di↵erent colors

indicate di↵erent query images.

(b) Cumulative distribution of aligned reads as a function of increasing distance from

target to query. For reference, the dashed lines show the cumulative distribution of

targets by distance, and the dotted lines show an ideal where all reads are allocated

to the nearest targets. Di↵erent colors indicate di↵erent query images (gray for all

queries).

Fig. 10: Selected results for two of the ten query images, and aggregated
results for all queries.

distribution of distances across the targets. The further the solid line is from
the baseline, the stronger the relationship between distance and the number of
reads. The dotted line shows the ideal result, where reads are only allocated to
similar targets (those less than 0.2 Euclidean distance from the query).

The first sample query (the binoculars) shows a successful result, where most
of the reads are allocated to similar targets. In contrast, the second sample query
(the school bus) is less successful: the reads are distributed almost evenly across
similar and non-similar images.

Across all queries, our results are moderately successful — though there
are many reads going to dissimilar targets, our scheme is clearly capable of
performing similarity-based enrichment: roughly 30% of the sequencing resources
are being used by similar targets, which by construction make up just 10% of
the database.

6 Discussion

In practice, the 10-dimensional image feature subspace used for our experiments
is insu�ciently selective. Referring back to Figure 1, the 100-dimensional space
was more e↵ective at relating distance to qualitative similarity. But it is di�-



Over 700MB. 50M+ sequences. 9B+ Nucleotides,  
5B+ reads. Demonstrated random access w/ 40+ objects. 

Illumina and Nanopore sequencing readout.
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